Classification of breast ultrasound images using fractal feature.
نویسندگان
چکیده
Fractal analyses have been applied successfully for the image compression, texture analysis, and texture image segmentation. The fractal dimension could be used to quantify the texture information. In this study, the differences of gray value of neighboring pixels are used to estimate the fractal dimension of an ultrasound image of breast lesion by using the fractal Brownian motion. Furthermore, a computer-aided diagnosis (CAD) system based on the fractal analysis is proposed to classify the breast lesions into two classes: benign and malignant. To improve the classification performances, the ultrasound images are preprocessed by using morphology operations and histogram equalization. Finally, the k-means classification method is used to classify benign tumors from malignant ones. The US breast image databases include only histologically confirmed cases: 110 malignant and 140 benign tumors, which were recorded. All the digital images were obtained prior to biopsy using by an ATL HDI 3000 system. The receiver operator characteristic (ROC) area index AZ is 0.9218, which represents the diagnostic performance.
منابع مشابه
Detection and Classification of Breast Cancer in Mammography Images Using Pattern Recognition Methods
Introduction: In this paper, a method is presented to classify the breast cancer masses according to new geometric features. Methods: After obtaining digital breast mammogram images from the digital database for screening mammography (DDSM), image preprocessing was performed. Then, by using image processing methods, an algorithm was developed for automatic extracting of masses from other norma...
متن کاملDetection and Classification of Breast Cancer in Mammography Images Using Pattern Recognition Methods
Introduction: In this paper, a method is presented to classify the breast cancer masses according to new geometric features. Methods: After obtaining digital breast mammogram images from the digital database for screening mammography (DDSM), image preprocessing was performed. Then, by using image processing methods, an algorithm was developed for automatic extracting of masses from other norma...
متن کاملAutomatic classification of Non-alcoholic fatty liver using texture features from ultrasound images
Background: Accurate and early detection of non-alcoholic fatty liver, which is a major cause of chronic diseases is very important and is vital to prevent the complications associated with this disease. Ultrasound of the liver is the most common and widely performed method of diagnosing fatty liver. However, due to the low quality of ultrasound images, the need for an automatic and intelligent...
متن کاملImprovement of Breast Cancer Detection Using Non-subsampled Contourlet Transform and Super-Resolution Technique in Mammographic Images
Introduction Breast cancer is one of the most life-threatening conditions among women. Early detection of this disease is the only way to reduce the associated mortality rate. Mammography is a standard method for the early detection of breast cancer. Today, considering the importance of breast cancer detection, computer-aided detection techniques have been employed to increase the quality of ma...
متن کاملA Study on Morphological and Textural Features for Classifying Breast Lesion in Ultrasound Images
Developing a Computer Aided Diagnosis (CAD) system for Breast Ultrasound (BUS) is a high exigent work in medical imaging analysis systems. BUS detects abnormalities or suspicious regions accurately that is misspelled by mammogram, and helps to find the varying degrees of malignancy. Extracting discriminating features in CAD is a most prominent task that results in good diagnosis. This study ana...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Clinical imaging
دوره 29 4 شماره
صفحات -
تاریخ انتشار 2005